Issue
Goodmorning, I built neural network in order to predict a physical quantietis. I want to run 10 times the model in order to see the stability of the model. How can I create a DataFrame with all the loss function (both validation and training) evaluated along the 10 try?
for i in range(10): #per in numero di esperimenti
test_size = 0.2
dataset = pd.read_csv('CompleteDataSet_original_Clean_TP.csv', decimal=',', delimiter = ";")
label = dataset.iloc[:,-1]
features = dataset[feat_labels]
y_max_pre_normalize = max(label)
y_min_pre_normalize = min(label)
def denormalize(y):
final_value = y*(y_max_pre_normalize-y_min_pre_normalize)+y_min_pre_normalize
return final_value
X_train1, X_test1, y_train1, y_test1 = train_test_split(features, label, test_size = test_size, shuffle = True)
y_test2 = y_test1.to_frame()
y_train2 = y_train1.to_frame()
scaler1 = preprocessing.MinMaxScaler()
scaler2 = preprocessing.MinMaxScaler()
X_train = scaler1.fit_transform(X_train1)
X_test = scaler2.fit_transform(X_test1)
scaler3 = preprocessing.MinMaxScaler()
scaler4 = preprocessing.MinMaxScaler()
y_train = scaler3.fit_transform(y_train2)
y_test = scaler4.fit_transform(y_test2)
from keras import backend as K
# =============================================================================
# Creo la rete
# =============================================================================
optimizer = tf.keras.optimizers.Adam(lr=0.001)
model = Sequential()
model.add(Dense(100, input_shape = (X_train.shape[1],), activation = 'relu',kernel_initializer='glorot_uniform'))
model.add(Dropout(0.2))
model.add(Dense(100, activation = 'relu',kernel_initializer='glorot_uniform'))
model.add(Dropout(0.2))
model.add(Dense(100, activation = 'relu',kernel_initializer='glorot_uniform'))
model.add(Dropout(0.2))
model.add(Dense(100, activation = 'relu',kernel_initializer='glorot_uniform'))
model.add(Dense(1,activation = 'linear',kernel_initializer='glorot_uniform'))
model.compile(loss = 'mse', optimizer = optimizer, metrics = ['mse', r2_score])
history = model.fit(X_train, y_train, epochs = 200,
validation_split = 0.1, shuffle=False, batch_size=250)
history_dict = history.history
loss_values = history_dict['loss']
val_loss_values = history_dict['val_loss']
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)
y_train_pred = denormalize(y_train_pred)
y_test_pred = denormalize(y_test_pred)
from sklearn.metrics import r2_score
from sklearn import metrics
r2_test.append(r2_score(y_test_pred, y_test1))
r2_train.append(r2_score(y_train_pred, y_train1))
# Measure MSE error.
MSE_test.append(metrics.mean_squared_error(y_test_pred,y_test1))
MSE_train.append(metrics.mean_squared_error(y_train_pred,y_train1))
RMSE_test.append(np.sqrt(metrics.mean_squared_error(y_test_pred,y_test1)))
RMSE_train.append(np.sqrt(metrics.mean_squared_error(y_train_pred,y_train1)))
Solution
Without even using Pandas, just append them to a list. You can then use the pd.DataFrame()
constructor if you really need a dataframe.
loss_and_val_loss = []
for i in range(...):
# ...
loss_values = history_dict['loss']
val_loss_values = history_dict['val_loss']
loss_and_val_loss.append((loss_values, val_loss_values))
# ...
Assuming both of those _values
es are lists of numbers, one per epoch, this can be pivoted into dataframes as follows:
# (Example data with two trials, each with 3 epochs)
loss_and_val_loss = [
([1, 2, 3], [4, 5, 6]),
([7, 8, 9], [10, 11, 12]),
]
losses, val_losses = zip(*loss_and_val_loss)
losses_df = pd.DataFrame(losses)
val_losses_df = pd.DataFrame(val_losses)
Answered By - AKX
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.