Issue
I have a Pandas DataFrame like this:
col1 col2 col3
1 0.2 0.3 0.3
2 0.2 0.3 0.3
3 0 0.4 0.4
4 0 0 0.3
5 0 0 0
6 0.1 0.4 0.4
I want to replace the col1
values with the values in the second column (col2
) only if col1
values are equal to 0, and after (for the zero values remaining), do it again but with the third column (col3
). The Desired Result is the next one:
col1 col2 col3
1 0.2 0.3 0.3
2 0.2 0.3 0.3
3 0.4 0.4 0.4
4 0.3 0 0.3
5 0 0 0
6 0.1 0.4 0.4
I did it using the pd.replace
function, but it seems too slow.. I think must be a faster way to accomplish that.
df.col1.replace(0,df.col2,inplace=True)
df.col1.replace(0,df.col3,inplace=True)
is there a faster way to do that?, using some other function instead of the pd.replace
function?
Solution
Using np.where
is faster. Using a similar pattern as you used with replace
:
df['col1'] = np.where(df['col1'] == 0, df['col2'], df['col1'])
df['col1'] = np.where(df['col1'] == 0, df['col3'], df['col1'])
However, using a nested np.where
is slightly faster:
df['col1'] = np.where(df['col1'] == 0,
np.where(df['col2'] == 0, df['col3'], df['col2']),
df['col1'])
Timings
Using the following setup to produce a larger sample DataFrame and timing functions:
df = pd.concat([df]*10**4, ignore_index=True)
def root_nested(df):
df['col1'] = np.where(df['col1'] == 0, np.where(df['col2'] == 0, df['col3'], df['col2']), df['col1'])
return df
def root_split(df):
df['col1'] = np.where(df['col1'] == 0, df['col2'], df['col1'])
df['col1'] = np.where(df['col1'] == 0, df['col3'], df['col1'])
return df
def pir2(df):
df['col1'] = df.where(df.ne(0), np.nan).bfill(axis=1).col1.fillna(0)
return df
def pir2_2(df):
slc = (df.values != 0).argmax(axis=1)
return df.values[np.arange(slc.shape[0]), slc]
def andrew(df):
df.col1[df.col1 == 0] = df.col2
df.col1[df.col1 == 0] = df.col3
return df
def pablo(df):
df['col1'] = df['col1'].replace(0,df['col2'])
df['col1'] = df['col1'].replace(0,df['col3'])
return df
I get the following timings:
%timeit root_nested(df.copy())
100 loops, best of 3: 2.25 ms per loop
%timeit root_split(df.copy())
100 loops, best of 3: 2.62 ms per loop
%timeit pir2(df.copy())
100 loops, best of 3: 6.25 ms per loop
%timeit pir2_2(df.copy())
1 loop, best of 3: 2.4 ms per loop
%timeit andrew(df.copy())
100 loops, best of 3: 8.55 ms per loop
I tried timing your method, but it's been running for multiple minutes without completing. As a comparison, timing your method on just the 6 row example DataFrame (not the much larger one tested above) took 12.8 ms.
Answered By - root
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.